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‘Abstract 
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symmetric solutions of nonlinear scalar field theories w&b, although un- 
stable, are eztremely long-lived. We show that they naturally appear during 
the collapse of subcritical bubbles in models with symmetric and asymmet- 
ric double-well potentials. By a combination of analytical and numerical 
work we explain several of their properties, including the conditions for 
their existence, their longevity, and their final demise. We discuss several 
contexts in which we expect oscillons to be relevant. In particular, their 
o.vd+~tion during cosmological phase transitions may have wide-ranging 
consequences. 
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I. INTRODUCTION 

The search for sratic. localized, non-singular solutions of nonlinear field theories has 

by now a long history [l]. In (l+l)-climensious, it is possible to find exact static solutions 

to the nonlinear Klein-Gordon field equat,ions for certain interacting potentials, such as 

the kink solutions of sine-Gordon or @‘i models. For a larger number of spatial dimensions, 

Derrick’s theorem forbids the existence of static solutions for models involving only real 

scalar fields 121. There are several ways to circumvent Derrick’s theorem, by invoking 

more complicated models with bwo or more imeracting fields. Well-known examples 

include topological defects such as t.hc ‘t Hooft-Polyakov monopole or the Nielsen-Olesen 

vortices [3]. Topological conservat.ion laws guarantee the stability of these configurations. 

It is also possible to find localized time-dependent but non-dissipative solutions of 

nontopological nature, the so-called nontopological solitons [4]. The simplest model of 

a nontopological soliton in the context of renormalizable theories has a complex scalar 

field quadratically coupled to a real scalar field with quartic potential. The stability of 

the configuration comes from the conserved global charge Q carried by the complex field 

which is confined within a spherically-symmetric domain formed by the real scalar field. 

One can show that for Q larger than a critical value, the energy of the configuration 

is smaller than the energy of Q free particles. There has been a recent upsurge of 

interest on nontopological solitons due to their potential relevance to cosmology and 

astrophysics 151. If one waives the requirement of renormalizability, it is possible to find 

nontopological solitons for models with a single complex scalar field, by invoking, e.g., a 

@ term in the potenlial. These are the so-called Q-ball solutions discovered by Coleman 

and collaborators [G]. 

In the present work we will go back to the simple models involving only a self- 

interacting real scalar field and study the properties of time-dependent spherically- 
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symmetric solutions. Due to the constraint imposed by Derrick’s theorem, these con- 

figurations have been somewhat overlooked in the literature (but not completely, as we 

will discuss below). Why should anyone bother wit,h solutions which are known to be 

unstable? One possible answer is that instability is a relative concept, which only makes 

sense in context, that is, when the lifetime of a given configuration is compared with 

typical time-scales of the system under study. Thus, unstable but long-lived configu- 

rations may be relevant for systems wit,11 short, dynamical time-scales. Another answer 

is that a detailed study of these configurations can greatly clarify dynamical aspects of 

nonlinearities in field theories and the role they play in several phenomena, ranging from 

nonlinear optics to phase transitions both in the laboratory and in cosmology 171. 

One of the motivations for studying the evolution of unstable spherically-symmetric 

configurations comes from the work of Gleiser, Kolb, and Watkins on the role subcritical 

bubbles may play in the dynamics of weak first order phase transitions [8]. Considering 

models with double-well potentials in which the system starts localized in one minimum, 

these authors proposed that for sufficiently weak transitions correlation-volume bubbles 

of the other phase could be thermally nucleated, promoting an effective phase mixing 

between the two available phases even before the critical temperature is reached from 

above. This could have important consequences for models of electroweak baryogenesis 

which rely on the usual homogeneous nucleation mechanism 191. However, Gleiser, Kolb, 

and Watkins did not include the shrinking of the bubbles in their estimate of the fraction 

of the volume occupied by each of the two phases, leading some authors to question 

their results [lfl]. Since then, Gleiser and Gelmini included the shrinking of the bubbles 

into the original estimates, concluding that for sufficiently weak~ transitions subcritical 

bubbles are indeed nucleated at a fast enough rate to cause substantial phase mixing 

[ll]. Although an improvement. the modeling used to describe the bubble shrinking was 

still too simplistic, as it assumed that the bubbles just shrunk with constant velocity. - 
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The evolution of spherically-symmetric m&able solut,ions of the nonlinear I<lein- 

Gordon equation was originally studied numerically in t.he mid-seventies by Bogolubsky 

and Makhankov [12]. Using a quasiplanar initial configuration for the bubbles (that is, 

a tanh(r - Ra) profile, with Rc the initial radius), these authors discovered that for a 

certain range of initial radii the bubble evolut.ion could be described in three stages; 

after radiating most of its init.i;ll energy t,he bubble settled into a, regime which was 

quite long-lived. with a lifetime which depended on the initial radius. The bubble then 

disappeared by quickly radiating away its remaining energy. These configurations were 

called “Pulsons” by these authors, due to the pulsating mechanism by which they claimed 

the initial energy was being radiated away. Their results were recently rediscovered and 

refined by one of us [13]. After a more deta.iled a,nalysis of these configurations, it 

became clear that their most striking feature was not the pulsating mechanism by which 

bubbles radiate their initial energy, but the rapid oscillations of the field’s amplitude at 

the core of the configuration during the pseudo-stable regime, in a manner somewhat 

analogous to resonant breathers in kink-antikink scattering [14]. In fact, it was realized 

that during the pseudo-stable regime almost no energy is radiated away and the radial 

pulsation is actually quite small in amplitude. Hence the name “Oscillon” was proposed 

instead. It was also shown that these configurations appear both in symmetric and 

asymmetric potentials, are stable against small radial perturbations, and have lifetimes 

far exceeding naive expectations. However, not much else has been done in order to 

esplore the properties of these configurations. Other works on this topic were concerned 

in establishing the existence of these solutions for other potentials, such as the sine- 

Gordon and logarithmic potemials, different symmetries, and somewhat limited stability 

studies [15]. 

By a combination of analytical and numerical methods, we will shed some light on the 

properties of these configurations (henceforth oscillons). We will establish the conditions -. 

4 



for t,heir existence. the reaSml for t,heir longevity, and clarify their final collapse. Armed 

with a bett.er understa~ndiug of bheir properties, we will also be able to suggest several 

situations where we belie\;e oscillons can be of importance. 

The rest of this paper is organized as follows. In the nest Section we will set up 

the general formalism and obtain the esact solution of the spherically-symmetric linear 

Klein-Gordon equat,ion. As espect.ed, in the linear case no oscillons appear. with bubbles 

quickly decaying away. We obtain t,he time-scale in which t,his decay occurs in order to 

later compare it to the case when nonlinearities are present. In Section 3 we present 

the numerical resu1t.s that establish severa, of the key properties of oscillons for symmet- 

ric double-well potentials. Guided by these results, in Section 4 we present analytical 

arguments to explain why there is a minimum initial radius for bubbles to settle into 

the oscillon stage. why some oscillons live longer than others, and how oscillons finally 

disappear. In Section 5 we estend the numerical analysis of Section 3 to asymmetric 

double-well pot.entials, showing how the lifetime of oscillons is sensitive to the amount of 

asymmetry between the two minima. Here one must be careful to set the initial radius 

to be smaller than the critical radius, as bubbles with radii larger than critical will grow. 

As in the symmetric potent.ial case there are no critical bubbles, we can say that we are 

studying the evolution of subcritical bubbles in symmetric and asymmetric potentials. 

Oscillons are thus a possible stage in the evolution of subcritical bubbles toward their 

demise. In Section 6 we discuss several possible situations in which these configurations 

will play an important rcYe. Although we focus mainly on cosmological phase transi- 

tions, some of our arguments apply equally well to phase transitions in the laboratory. 

We conclude in Section i witl1.a summary of our results and an outlook to future work. 
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II. PRELIMINARIES 

In this Section we introduce the not,ation and some definitions which will be useful 

later on. We also present the esact solut,ion for the evolution of a “Gaussian-shaped” 

bubble (i.e. with #r, t = 0) N exp[-r.*/R*]) in the linear regime. 

A. General Formalism 

The action for a real scalar field in (3+1)-dimensions is 

SM = J c~:r [&ww - v,,,(4)] 1 (1) 
where the subscripts S and A stand for symmetric (SDWP) and asymmetric (ADWP) 

double-well potentials, given respectively by, 

l/.(4) = ; 4’ - 2f 
( ) 

2 

and. 

V*(4) = !$z - 553 + ;$4 

(2) 

Note that the coupling constants X and 00 are dimensionless. A solution 4(x, t) to the 

equation of motion, 

(4) 

has energy 

E[+I = /A [+/at)2 + ;(vqv + V(P)] (5) 

We will restrict our investigation to spherically-symmetric configurations. In this case 

it proves convenient to introduce dimensionlessvariables. p = rm. 7 = tm, and @ = ~~. 

The nonlinear Klein-Gordon equation is, -~ 
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3% a’* 2m @ - a3 (SDWP) 
------= 
iw a$ p al, (6) 

-@ + a@ - a3 (.4DW:P) 

where o = X-‘l’oc. Note that. for the SDWP the two minima are located at @a = -1 

and a+ = 1. For the ADWP (with o 2 2), the minima are at @a = 0 and @+ = 

4 [I + (1 - ~)“‘]. Requiring @+ to be the global minimum implies a* > 9/2. For 

a2 = 9/2 the two minima are degenerate with a+ = &?. This value will be important 

later. 

\Ve are interest,cd in following t,hc evolut~ioii of unstable spherically-symmetric config- 

urations of initial radius X0, (from now on we call t.hese initial configurations subcritical 

bubbles both for the SDWP and the ADWP) which can be thought of as being localized 

fluctuations about the global vacuum aa. Thus, we must measure the rate at which the 

initially localized energy is radiated away as the subcritical bubble relaxes to the global 

vacuum. This can be done by surrounding the initial configuration with a sphere of 

sufficiently large radius, R, >> f&, and measuring the flow of energy through the surface 

of the sphere. The evolution of subcritical bubbles is obtained by solving the nonlinear 

Klein-Gordon equation numerically. We define the subcritical bubble’s kinetic, surface, 

and volume energies, respectively, by 

J R. 
Ec = 2n p2&2dp. Es = 2~ 

0 J oR’ p2(@)’ dp, E, = -In J R* p’“(a) dp , 0 (7) 

where a prime denotes derivative with respect to p. The bubble’s total energy is thus, 

Eb(7) = En-(r) + E,(T) + E,(T) (8) 

In order to solve the nonlinear Klein-Gordon equation we will impose the following 

boundary conditions, 

@(P - =J, 7) = @cl, cqo, T) = 0, &(/I, 0) = 0 (9) -. 
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The first condition guarantees that the bubble approaches the vacuum at @s at spatial 

infinity. The second conclit,ion imposes regularity at the origin, while the last condition 

states that the bubbles st.art their evolution at rest. These conditions must be supple- 

mented by the initial profile of the bubble. We will investigate both ‘Gaussian’ and ‘tanh’ 

bubbles which we write as 

Gaussian: @(p, O)= (Cp, - aa) e- P?lG + Q. (10) 

tanh: +(p> O)= i [(@a - QC) tanh(p - Ra) + @a + aC] , Ra>l. (11) 

aC is the value of the field at the bubble’s core, which we may or not take as being the 

other minimum of the potential, a+. If we do, the bubble can be interpreted as being a 

field configuration of initial linear size N 2Ro which interpolates between the two vacua. 

As we will see later, it is not necessary to set Q9, = @+ in order to have subcritical bubbles 

relaxing into oscillons during their evolution. We can now move on to study the evolution 

of subcritical bubbles in the linear regime. 

B. Bubble Evolution in the Linear Regime 

As a first application of the above formalism, we will investigate the evolution of 

Gaussian bubbles in the linear regime. We choose as the linear potential, 

VL(@) = (a+ 1)2 , (12) 

as it has a minimum at @a = -1 with the same curvature as the SDWP. The Klein- 

Gordon equation has a trivial solution 3(~, rj = -1. Separation of variables with a 

constant -1;* allows us to write Q(p,r) = -1 + R(p)exp[fiv&?%], with the radial 

function R(p) obeying, 

R"+;R'+k'R=O (13) - 
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This equation has solutions which are linear combinations of y, 9. Since y is 

singular at, t.he origin we write t.hc general solution as 

@(p,r) = -1 +pb(k)y [COS(~T) +a(!~) sin( (14) 

The boundary conditions are, writing Q, = 2~~ - 1, q. an arbitrary constant, 

@(p,7 = O)= 2qoe-3'R: - 1 

CQI- tax), T) = -1 

9’( p = 0, T) = 0 

&(p,r=O)=O. 

Eq. 16 is trivially satisfied. Eq. 15 determines b(k), 

zq,, e-~21R2 o= J 0 

m&.@)?, 

Taking t.he sine transform we can write, 

/4l;) = !+ [c ,+, pe-P'/%eikP] 

The integral can be easily doue and ZVE obtain, 

b(k) - go',3 /.e-g"/4 

fi 

(15) 

(16) 

(l’i) 

(18) 

(19) 

(‘JO) 

(21) 

Regularity at the origin is also guaranteed. as [y]’ vanishes as p -+ 0. Choosing 

the bubble to start at rest implies thai. :~(ii) vanishes. Thus, the final solution satisfying 

all boundary conditions is, 

(22) 

In Figure 1 we show a plot of this solution, for initial amplitude 90 = 1 and radius 

Ro = 3. The bubble perfowls damped oscillations as it decays into Go = -1. 
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It is instructive to invest,igate the behavior of the bubble’s core with time, 

qp = Q) = -1 + @i/gr~~~6’e-‘W~ cos(~T) 

The integral is dominated by small values of k, k 5 2RT’. Thus, we can approximate 

the argument of cos( -7) for Ro 2 2 and write, 

q0Ri CJ(/J=O,r)=-1+- 
J?; 

~~ ,i& 1 J m dl; 1;2 ,-~k’/4 ,i&k2/4 

0 1 
Performing the integral we obtain 

CJ(p=O,r)=-1+ GO 

(1 + ~T’/R;)“/~ (25) 

Thus, the amplitude at the core decays as re3/*, while the frequency becomes constant 

for T 2 Ri/fi. The envelope of the core’s amplitude decays to l/e of its initial value 

above @a = -1 in a time (units restored) 

tljc N l.lSR’~m- (26) 
, 

In Fig. 2 we compare the above analytical approximation with the numerical solution of 

the Klein-Gordon equation (more details later). The excellent agreement gives support 

to the accuracy of the numerical methods used. 

III. EVOLUTION OF SUBCRITICAL BUBBLES IN SDWP: NUMERICAL 

RESULTS 

In this and the next Section we will restrict our analysis to bubbles in SDWP. Section 

5 will deal with bubble evolution for .4DWPs. The equation of motion is 

2 ;i, - @‘I - -cp’ = @J - @ 
P 

(27) 

with boundary conditions given by Eqs. 15 - lg. (For tan11 bubbles or any other initial 

bubble profile, just replace Eq. 15 by the appropriate choice.) This equation was solved -’ 
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numerically using a finite difference scheme fourth order accurate in space and second 

order accurate intime. The radial dimension of the two-dimensional grid moved outwards 

with the speed of light in order to avoid any radiation from being reflected on the lattice 

boundary and thus interfering with the bubble’s evolution within the grid (dynamically 

increasing simulation lattice). The alternative, a sufficiently long but static grid, is 

extremely time-consuming for long-lived oscillons. The resolution was typically set to 

np = 0.1 and AT = 0.05; the total energy Ea + 4*J&’ [;6’ + i(W)* + V(Q)] dp is 

then conserved throughout the evolution to better than one part in 103. Additionally, 

high resolution experiments (ilp = 0.01, ;1r = 0.005) produced the same results, with an 

energy conservation of one part in lo”. \Ve used R, = 10 for the SDWP, and R, = 15 for 

the ADWP. For reasons that will be made clear soon, we were not interested in bubbles 

of large initial radius. 

Figs. 3a and 3b show the energy of Gaussian and tan11 bubbles for several initial radii 

&. (More examples can be found in Ref. 1131.) In all the examples we took aC = +l; the 

bubble interpolates between the two vacua. It is clear that the evolution of the bubbles 

is very sensitive to the value of Ro. An extensive investigation showed that Gaussian 

bubbles with & 5 2.4 and RO 2 4.5 quickly disappear, radiating their initial energies to 

infinity. However, bubbles with 2.4 5 & 5 4.5, settle into a period of long-lived stability 

where practically no energy is radiated away. This stage in their evolution, which we call 

the oscillon stage, can have a duration approaching lo3 - 104m-‘, which is remarkably 

large compared to both short-lived bubbles and to the typical time-scales found for t,he 

linear po;er~!tial. Although the range of values for Ro which fall into an oscillon stage is 

sensitive to the initial profile of the configuration, the same results are obtained for other 

initial bubbles, such as tanh bubbles. This supports our previous claim that oscillons can 

be viewed as a possible stage during the evolution of subcritical bubbles; after shedding 

a sufficient fraction of their initial energy, the subcritical bubbles enter the oscillon stage - 
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which is characterized by an energ! with a nearly constant value of - 43m/X, regardless 

of their initial radius. 

The core value of the field. @(O. T), performs anharmonic oscillations as shown in 

Fig. 4a. In Fig. 4b we show a sequence of snapshots of an oscillon. Escept when @(O, 7) N 

-1, an oscillon configuration is very well approximated by a half-Gaussian. We define 

the effective radius of a localized field configuration by, 

R ( ) = f$ P3 [;w* + W)] dp 
rK 7 J$ p’ [#q* + 1,y$q] (jp ’ ReiT -=3z R, (28) 

In Fig. 5 we show t.he evolution of this radius for several bubbles during the oscillon 

stage. The divergence at the end is spurious, signaling that no energy is left within the 

sphere (the denominator of Eq. 28). It is clear that the effective radius of an oscillon 

is approximately constant, with variations which are smaller than 20% about a mean of 

a,, N 2.8 - 3.0. This justifies the name given to these configurations: An oscillon is 

a localized, time-dependent field configura~tion with nearly constant radius and energy 

which is characterized by auhannonic oscillations of the field amplitude about the global 

vacuum. 

In order to stress the remarkable longevity of oscillons we show in Figs. 6a and 6b 

the lifetime as a function of initial radius and energy, respectively. For Gaussian bubbles 

the longest living oscillon. with ~1 N 7.4 x 103, comes from an initial bubble of radius 

Ro = 2.86. For tanh bubbles, the longest living oscillon comes from an initial bubble of 

radius Ro = 3.08, with lifetime 7, N 4.4 x 103. In Fig. 7 we show the detailed dependence 

of lifetime as a function of radius for Gaussian bubbles about the peak at R. = 2.86. 

(Lifetimes are accurate to within 5%.) 

So far we have restricted our investigation to bubbles that interpolate between the 

two vacua. This is it not a necessary condition for the existence of oscillons although, of 

course, it, is sufficient. As long as the initial value of the field at the bubble’s core probes - 
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the nonlinearities of the potential and the initial radius is within the correct range (which 

varies with initial amplitude), oscillons can exist. We will give an analytical argument 

for this in the next Section. For now, we will just provide numerical evidence for this 

fact. In Fig. 8 we show a plot of lifetime for different core values. Clearly, no oscillon can 

develop if the initial energy is below t.he plateau energy. Also, we find that no oscillon 

develops if @Jo < +i.r, where @;“r = -l/d is the inflection point closest to @e. Thus, we 

arrive at the su&ient conditions for the existence of oscillons: i) the value of the field at 

the bubble’s core must be above the inflection point. and ii) the initial bubble’s energy 

must be above the plateau energy. Conditions i) and ii) fix the value of Rc for a given 

initial bubble to evolve into an oscillon. 

This concludes the presentation of our numerical results. In the next Section we will 

provide semi-analytical arguments to elucidate some of the properties of these configu- 

rations. 

IV. PROPERTIES OF OSCILLONS 

From the results of the previous Sections, it is clear that there are four main questions 

concerning the oscillons. First, why only bubbles with an initial radius above a certain 

value develop into oscillons, and how this value depends on the initial amplitude of the 

field at the bubble’s core. Second, why certain oscillons live longer than others. Third, 

what is the mechanism responsible for the oscillon’s final collapse. And finally, why above 

a maximum initial bubble radius no oscillons are possible. In this Section we address the 

first three questions. Work on the fourth question is in progress. 

In order to treat these questions analytically, we make use of the fact that inde- 

pendently of the initial bubble profile, an oscillon is very well approximated by a half- 

Gaussian. Even though the Klein-Gordon equation implies that @(p --t co, 7) - exp[-p], _ 
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the difference turns out to be sufficiently small in practice to justify our approximation. 

In a sense, the tail matters little to the dynamical properties of the configurations. The 

agreement of our analytical arguments with the numerical results should convince the 

reader of t,his fact. We model the oscillon by writing, for the SDWP, 

qp, 7) = ‘Zq(T)esp [--pe/R?(T)] - 1 (‘29) 

With this ansutz we have effectively reduced the field theory problem to two degrees of 

freedom, the amplitude at the core @Jr) = 24’) - 1, and the radius R(r). This problem 

is still quite complicat.ed to treat analytically due to the nonlinear coupling between the 

two degrees of freedom. Further simplification is guided by the numerical investigation, 

which showed bhat t,he effective radius of the oscillon remains practically constant, with 

oscillations about its mean value of order 20% or less. Thus, as a first step, we will 

keep the radius constant, and treat only the amplitude at the core as an effective degree 

of freedom. Strong as it may seem, this simplification will allow us to extract several 

important results concerning the observed numerical behavior of these configurations, 

as we show in the next subsections. We are currently investigating the consequenses of 

keeping both degrees of freedom q(r) and R(r). 

The above model for the oscillon still misses one important ingredient; it does not 

include radiation of the bubble’s energy to infinity. The justification for neglecting this 

lies in the fact that oscillons hardly radiate. By excluding radiation it is possible to 

analytically integrate the energy over the whole space. Using the definitions in Eq. 7 we 

obtain, for the kinetic, surface and volume energies, respectively, 

Eli = 
TJZ;; 3?n.G 
TR3Q2, E, = 2 R$, E,. = afiR3 

4& 
i2 - sq3 + $4’ (30) 
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A. Existence of Oscillons: Lower Bound on the Initial Radius 

From Fig. Ga it is clear that there is a lower bound on the initial value of the bubble 

radius so that it relaxes into an oscillon during its collapse. Since from our previous 

discussion we know that oscillons are a product. of the nonlinearities in the system, 

this result suggests t,hat for small enough init,ial radii the nonlinearities are ineffective 

to trigger the rescmant behavior responsible for the oscillon’s longevity. That this is 

the case can be shown by studying t,he effective potential controlling the behavior of 

the amplitude q(r). Using the above ans& with constant radius, the energy of the 

configuration E = Ek + E, + E,. can be writ.ten as the energy of a particle of unit mass 

with a potential V(q), 

E 
- = ;a + V(rl), I-.‘(q) = ( 
1GrA (31) 

where A = eR3, B = %R, C = eR3, and D = gR” follow from Eq. 30. The 

potential V has only one minimum at q = 0, (a = &, = -1, the global vacuum), about 

which the amplitude performs a,nharmonic oscillations. 

It is the energy localized within a small region surrounding the bubble that may (or 

not) feed the nonlinear gr0wt.h of the modes ultimately responsible for the appearance of 

the oscillon during the collapse of the bubble. This lends further support to the above 

ansatz neglecting radiation. Thus, the equation of motion for the amplitude q(7) is, 

ii=-2 1.; q+3;q2-zq~. 
( > (32) 

ivritk ‘J(T) = Q(r) +6q(~). t,he linearized eqrmtion satisfied by the fluctuations 64(T) is, 

E’h = -w’(&R)bq, d(cj, R) = 3h7’ - gTcj + 2 + Rz fi (. 3) , 

where we have substituted the numerical values of the constants A, B, C, and D in the 

expression for the frequencies J(g, R). Note that w’(g, R) is simply the curvature of the - 
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potential dictating the dynamics of the amplitude q(T). As the bubble radiates its energy 

away, the configuration decays into the vacuum. However, for w*(Q, R) < 0, fluctuations 

about 4 are unstable, driving the amplitude away from its vacuum value. These are 

the fluctuations which are mainly responsible for the appearance of the oscillon. In 

Fig. 9 we show a plot of the surface wl*(q, R). It has one minimum at &in N 0.77 (with 

location independent of R!), where its value is w2(qmin,R) N -0.514 + 3R-*. Thus, 

only for R > R”,i” N 2.42, w2 < 0 and fluctuations can grow. In other words, only for 

R. > R,i,, N 2.42 are oscillons possible. This lower bound on the value of the radius 

agrees very well with our numerical results (see Fig. Ga). It is independent of the initial 

amplitude of the bubble. All bubbles with initial radius smaller than R”i” will quickly 

collapse. (For core amplitudes above @Jo = 1, it. is possible to decrease the initial radius 

by about 20% or so and still obtain oscillons.) 

B. Collapse of Oscillons 

The above analysis can also provide information about the final decay of oscillons. 

For R > R,i,, w*(g, R) will be negative for amplitudes, 

q- I 4; I q+ 1 i% = q [,.(,-$l+&J)l’*] . (34) 

Thus, for R > R,i. there is a minimum value for the amplitude at the core, shown in 

Fig. 10, a;(R) = 2&(R) - 1, below which the oscillon slips into the linear regime and 

quickly decays. This result can be nnde:s~oud as follows: As the bubble settles into the 

oscillon configuration with energy given by the plateau energy E N 43m/X and radius 

&T w 2.&n-!, there is a maximum value for the amplitude of the field at the core. 

This value is obtained from the formula for the static energy with its value fixed at the 

plateau value and with radius R N Ref, and it is @c N 0.2. The values of the field at 

the oscillon’s core obtained numerically are always marginally within the allowed region - 
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which gives w* < 0; t.he oscillon survives while fluctuations are unstable. However, during 

the oscillon stage, energy is slowly being radiated away, and thus t,he amplitude at the 

core is slowly decreasing while the average value of the radius is slowly increasing (Fig. 5). 

From Fig. 10 and the argument above, below a certain value for the amplitude at the core 

t,he perturbations enter the linear regime and the oscillon decays. A comparison between 

a;( Rem) and the numerical values of the core’s amplitude at the last oscillation is given 

in Table 1. In interpret,ing these results. we must keep in mind the crudeness of the 

analytical approximation used t.o obtain e;(R). Even so, at least, for the longest living 

oscillons, it is clear that during the last oscillation t,he amplitude falls below a;(R). A 

more detailed analysis shows that the amplitude falls below Q;(R) during the last few 

oscillations, as the configuration starts to approach the linear regime responsible for its 

final demise. For completeness, in Fig. 11 we show a phase-space portrait of the evolution 

of aa,(r) during the oscillon stage and its final collapse, for a bubble with initial radius 

Ro = 3.0. Clearly, the final spiraling into @a = -1, typical of the linea,r regime, occurs 

as the maximum core amplitude (for 6 = 0) falls roughly below @;. 

C. Lifetime of Oscillons 

A question which is of great interest is the determination of the oscillon’s lifetime as a 

function cf tk btbble’s initial radius and core value. Although we were unable to obtain 

an analytical expression for the lifetime, we do understand why some oscillons live longer 

than others. Our argument is based on the virial theorem for spherically-symmetric 

scalar field configurations, which we derive next. 

Multiplication of the equation of motion, a*@/&* - d*4/&* - (2/r) a@/& = -v 

(cf. Eq. 4), by .l?rr*@ and integrat,ing over r gives, after integration by parts, 

471 mT*&dr+4n J - * I2 1.4 dr+41r 
m 2 av 

r+--ddr=O 
II J Cl a4 ’ 

(35) - 
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where we assumed that lim,.-,r’O = 0. The second term is easily recognized as twice 

the total surface energy. Performing a time averaging over one period, denoted by 

we get 

FL== ,I.2 dr Jr dfdd + 2(E,) + 4i; ( 
/,I 24% &) II 0 

(36) 

and after integrating by parts the time integral in the first term, (the boundary term & 

vanishes due to the integration over a period), 

-$/,dt4aim ~z~zd~+2(E,j+4s(~mr2~~dr) =o . (38) 

Identifying the first term as twice the time-averaged kinetic energy, we arrive at the virial 

theorem 

(El.) = (E,) + 2n lm ).$$ &) ( 
For the SDWP, in dimensionless variables, 

(Ed = (Es) + 27~ (/a- p2~2(@2 - 1) ,Q) . 

(39) 

(40) 

As usual, the virial theorem holds as an equality only for strictly periodic systems. 

Numerical simulations of oscillons show, however, that the basic oscillation is overlaid by 

a long-wavelength modulation and other deviations from strict periodicity. It is hence of 

interest to analyze the “departure from virialization”, 

u(T) = (El.) - (E,) - 2a f*p2+2(@2 - I)dp) , 
( 

where now 

p26’dp7 E, = 2a 
R. 

P*(+‘)’ dp 

(41) 

(42) - 
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and R, = 10 as before is an integrat,ion cut-off large enough to encompass the entire 

configuration. For a perfectly virialized configuration, V(t) = 0. In Fig. 12 we show the 

evolution of V for several Gaussian bubbles. When contrasted with Fig. 6a, it becomes 

clear that the lotrger me E$eretime of the oscillon. the belter uirialized it is. This result is 

made more transpareut by plotting the lifetime as a function of the maximum value of 

V for several radii, as shown in Fig. 13. Note also t,he symmetry about the longest-living 

oscillon, with X0 = 2.86. 

Using the virial relation aud the mmrerical results, we can obtain a semi-analytical 

estimate for the optimal radius for an oscillon, that is, the one which is longest-lived. 

Although we perform the calculation for the SDWP, our methods can be easily generalized 

for any potential. With the ansatz for the Gaussian profile given in Eq. 29, the time- 

averaged oscillon energy, and the departure from virialization, V, are, respectively, 

W -= TV2 $4') + &'(rl')- +) + ;,,,) R3 + y(q2)R, (43) 

and 

V 
7r3/2= $($) +2(q)- T(q2) + y(q3, -(p'))R'- y(q')R (44) 

Multiplying the expression for the time-averaged energy by 2 we can eliminate the cubic 

and quartic terms in the expression for V. Using that for the longest-lived oscillon V N 0, 

we obtain a cubic equation for the optimal radius, R,,,, 

3fi.2 v5 
-+2 ) - +'12) +2(q) p;,., + $')Rm.. - 2d2(E) cz~ 0 i-15) 

To proceed, we further assume that q(T) is periodic, which is a good approximation for 

the longest-lived oscillon. Writing q(r) = q,yzos(wT), with q,, an amplitude determined 

numerically (the reader should be careful to distinguish between this w and the one used 

in the linear perturbation analysis), the time-averaging can be performed and we finally 

obtain, 
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2 (3w2 - l)i;R;,,, + $i;R,,,,, - ~T-~'~(E) = 0 

The roots of this equation are determined once we know the values of the parameters 

(E), q,,. and w. These can be obtaiued numerically using the remarkable independence of 

oscillons on initial conditions. We use (E) N 43, and w = 27r/T N 1.37. The maximum 

core amplitude, ep,, is roughly bomlcled by -0.1 5 aC 5 0.2, which gives for qo the range 

0.45 5 q0 5 0.6. With t,hese paramet,crs, we find t,hat the equation has only one real root, 

bounded by 2.90 5 R lTIpx 5 3.54. This range of values is in excellent agreement with the 

observed numerical range for the oscillon radius (see Fig. 5) providing strong support to 

our arguments. It also gives the correct range of initial values for the radius of bubbles 

which will relax into the longest-lived oscillons. Thus, the cscil’o:i can be interpreted as 

the attractor field configuration which minimizes the departure from virialization. 

V. EVOLUTION OF SUBCRITICAL BUBBLES IN ADWP: NUMERICAL 

RESULTS 

It was first noted in Ref. [13] that oscillons will also be present for nondegenerate 

potentials. Most of the analytical arguments above will also apply in this case. In 

particular, the minimum radius for subcritical bubbles to evolve into oscillonscan also be 

obtained by the perturbation analysis presented in Section 4..4. The sufficient conditions 

for the existence of oscillons will still be the same, namely, that the initial energy be above 

the plateau energy, and that the initial core amplitude be above the inflection point of the 

potential. Of course, the plateau energy will depend on the degree of asymmetry of the 

potential. The important difference is that for ADWPs, the O(3)symmetric equations of 

motion admit static solutions known as bounces [16]. These are the well-known critical 

bubbles of strong first order phase transitions, which specify the thermal barrier for the 

decay of metastable states, E,,i, [li]; bubbles with radii larger than critical will grow, - 

20 
. 



converting the mebastable phase into t,he stable phase with lower free-energy density. 

Thus, when discussing oscillons in tlie coutest of ADWPs, we must make sure that the 

initial configurations have radii smaller than the critical bubble radius, R,,i,, as well as 

energies smaller than the decay barrier. The initial bubble energy is bounded by the 

plateau energy from below and the decay barrier from above. 

In order to see the effects of the asymmetry on the properties of the oscillons, we start 

by showing the results for the degenerate case, obtained by setting cy = 3/J? in Eq. 6. 

Recall that in this case the minimal are at a.0 = 0 and Q+ = a. In Fig. 14 we show 

the lifetime of oscillons its a functiou of init.ia! radius for several core amplitudes. Note 

that the lifetimes are larger than for the SDWP (Fig. 6a). This is simply due to the fact 

that for a = 3/&he .4DWP is sllallower and narrower than the SDWP, softening the 

surface energy of the initial bubbles. In Fig. 15a we show the lifetimes vs. radii of initial 

Gaussian bubbles leading to long-lived oscillons for different values of a. For reference 

we also show the values of the critical radii. The perturbative analysis of Section 4.A can 

easily be adapted to this ADWP case, yielding an expression for the frequencies w*(q, R) 

of small fluctuations (analogous to Eq. 33), 

w2(q,R) ~ 3Jz-* &a- 
4Q- 9 -q+(l+-$) . 

The minimum of this surface (for fixed a) is once again independent of R with 

qmin N 0.511~. hence oscillons are possible only for Ro > R,i. N (3/(0.28a2 - l))‘/*. 

With the values 0 = 3/d, 2.16 and 2.23 we then obtain & > 3.39, 3.12 and 2.;6 

respectkC+, results which compare favorably with the numerical simulation values of 

fi > 3.2, 3.1 and 2.9, respectively. In Fig. 15b we show lifetime vs. initial bubble energy 

for different values of CY. For reference we give the values of the plateau energy and of t.he 

decay barrier. Note that as the asymmetry is increased. the lifetimes of the oscillons also 

increase, almost by a factor of two between the nearly degenerate Q = 2.16 and the more - 
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asymmetric o = 2.23, while the ratio between the critical bubble radius, R,,i,, and the 

longest-lived oscillon, R,,,,,, varies from R,,it/R,,, N 5 for o = 2.16 to R,,il/Rmax N 2 

for o = 2.23. As the asymmetry is increased, the oscillons approach more and more the 

critical bubble, explaining their increased longevity. 

VI. OSCILLONS IN ACTION: POSSIBLE APPLICATIONS 

In this Section we will present a few situations in which we expect oscillons to be 

relevant. -1s we will argue below, their remarkable longevity malies them specially in- 

teresting in the contest of phase rransitions; if thermally nucleated, their presence can 

affect the dynamics of the transition in several ways. It is not our intention here to give 

a detailed treatment of the role of oscillons on the dynamics of phase transitions, but 

simply to stress the interesting physics that ca,n emerge due to these configurations. 

As we have seen, a typical range of lifetimes is between tl = 103 - 104 m-t in units of 

the mass m introduced in Eqs. 2 aud 3. This is much longer than that of the solution to 

the spherically symmetric linear Klein-Gordon equation - 5n-‘. The expansion rate of 

the Universe in a radiation-dominated regime can be written in terms of the background 

temperature T as Hz 0; T4/mF,, where H is Hubble’s parameter. Thus, the expansion 

time-scale is tt, - H-’ 0: (mpJT)T-‘. Typically, the symmetry breaking temperature 

T, can be written in terms of the mass scale m of the theory as T, N m/d. Thus, the 

expansion time-scale at T, is tu - X(mpi/tn)n-‘. The ratio between the oscillon lifetime 

(taking tl = lo4 n-’ ) and the expansion time-scale is then, tl/tu - X-‘104(m/mpi). 

From this we see that for masses of order the GUT scale the lifetime of the oscillons is 

comparable (or larger, for weak coupling!) to the age of the Universe at that scale, an 

intriguing possibility. In such a scenario these unstable field configurations could have 

a dramatic effect on the dynamics of any phase transition. For example, during a first 
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order phase transition those subcritical bubbles which go on to form oscillons could last 

long enough to become critical bubbles as the Universe cooled. In this way we would 

have a method of completing the transit,ion quicker. Another possibility is that oscillons 

act as seeds or nucleation sites for the crit,ical bubbles. The combination of these two 

effects xvi11 increase the production rate of critical bubbles, a feature which may well have 

useful consequences for the old inflationary universe scenario. That model failed partly 

because the production rat,e of critical sized bubbles and larger could not keep pace with 

the exponential expansion of the Universe. If the bubble nucleation rate were increased, 

then this problem may well be overcome. 

For oscillons to be relevant, cosmologically, not only must they survive for long enough, 

they must be thermally produced in large enough numbers since they are unstable and 

eventually decay. A naive estimate of this rate is that the number density of oscillons of 

size R produced at temperature T due to thermal fluctuations is 

n(R,T) - T3e-f(R)/T , 

where F(R) is the free-energy of the configuration of radius R and is given by F(R) = 

E, + & in Eq. 30. Comparing F(R,,,) with F(%.) gives an indication of the fraction 

of bubbles which are o&Ions as opposed to critical at any given temperature T. In 

fact we can see quite easily that although the oscillons are unstable they are produced 

in much greater abundance, as their free-energy barrier is typically smaller than that 

for critical bubbles. To be sure of this we require that their thermal nucleation rate be 

considerably larger than the expansion rate of the Universe, i.e. r,,(R,T)/H >> 1. Since 

H rx T’/mpt, it becomes a straightforward comparison. For the case of the electroweak 

transition, Gleiser and Kolb [9] I rave shown that the condition on subcritical bubbles 

can be written as F(R)/T < 34. This in turn imposes a constraint on the mass of the 

associated Higgs, which turns out to be nrn. ,ggs 2 88GeV (see [18] for details). It seems v 

23 
. 



to be the case that oscillons will have an important effect on the dynamics of sufficiently 

weal; first order phase transitions. 

In this paper we have been investigating the existence of oscillons for both first and 

second order phase transitions. .% number of issues arise common to both cases which 

require further study. The first concerns the coupling of oscillons to other forms of 

matter, whether they be other scalar fields, gauge fields or fermions. We have regarded 

the oscillons as emerging from an effective theory in which the fields to which it is coupled 

have been integrated out (a procedure we would hope is valid for low enough energies), 

leaving an effective potential for the scalar licld. Ideally we would like to consider the 

full theory and solve for all the fields wibhout integrating out the massive ones. It could 

be that one of these fields leads to an instability in the @ field which causes the oscillon 

to decay faster than we have estimated. On the other hand, coupling the oscillon to 

a charged field may enhance its lifetime, as in the case of nontopological solitons [4]. 

A second issue concerns the coupling of oscillons to hot plasmas, as would be the case 

during thermal phase transitions. The plasma would act both as a viscous medium and 

as an enhancer of fluctuations, presumably affecting the lifetime of the oscillons. We are 

currently investigating both issues. 

The discussion in this Section has concentrated on early Universe aspects of oscillons. 

Since they are field theories we should expect them to be seen at laboratory energies as 

well. This may not be so easy to do in practice. but there are many examples of phase 

transitions in liquid crystals and Ising-like systems which produce nonlinear field theory 

objects such as topological defects [19]. Al so, solutions to the nonlinear Schrodinger 

equation have been known to be of importance in several contexts, including the propa- 

gation of information in optical fibres 1201. It is reasonable to expect that oscillons will be 

present in the non-relativistic limit, thus being possible solutions to the time-dependent 

nonlinear Schrijdinger equation as well. What would be required for oscillons is a distinct _ 
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signature. It could be that as the energy of the system reaches its plateau during the 

oscillon stage, the material has a particular refractive index and thus could be detected 

in scattering experiments. 

VII. CONCLUSIONS AND OUTLOOK 

In this paper we have presented the results of a detailed investigation of the properties 

of oscillon configurations and esplained, where possible, the physics behind their interest- 

ing dynamics. The fact that they exist in both first and second order phase transitions 

males them of particular interest. They are localized, non-singular, time-dependent, 

spherically-symmetric solutions of nonlinear scalar field theories, which are unstable but 

extremely long-lived, with lifetimes of order lo3 - lo4 VJZ-~, where m is the mass of the 

scalar field. They naturally appear during the collapse of spherically symmetric field con- 

figurations. We have obtained the conditions required for their existence, namely that 

the initial energy needs to be above a plateau energy and the initial amplitude of the field 

needs to be above the inflection point on the potential in order to probe the nonlinearities 

of the theory (but does not need to be at the true minimum of the potential). 

Of the many intriguing aspects of these configurations, some that stand out include 

the fact that they exist only for a given range of initial radii and core amplitudes. The 

lower value of the radii can be explained by perturbation theory. It corresponds to the 

minimum radius beyond which the field probes the nonlinearity of the potential. Explain- 

ing the upper bound for the initial radius of the field profile is not so straightforward and 

we are currently investigating this. It could well be that since larger bubbles have larger 

initial energies, during their collapse higher nonspherical modes are excited. triggering 

the rapid growth of instabilities responsible for the bubble’s collapse before it can settle 

into the oscillon stage. Another remarkable feature is that the plateau energy of the 
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oscillon is practically independent of the initial radius. We have interpreted t,his fact by 

showing that t0le oscillon can be thought of as the at,tractor field configuration which 

minimizes the departure from virialization. 

There is much that remains to be investigated. One concern is that we only investi- 

gated stability to radial perturbations. We really need to investigate how nonspherical 

perturbations affect the spherically symmetric solutions. One possibility is that they 

will tend to make t.he oscillons collapse into a pa,ncake configuration, and hence decay 

more quickly than in the spherical case. although we believe this will only be the case 

for bubbles with large initial radii. We may also think of higher nonspherical modes as 

excited states of the “ground-state” C = 0 resonance studied here. It is thus possible 

that oscillons may appear in higher energy configurations, which may decay either to the 

ground-state oscillon or just into scalar radiation. Finally, a more detailed study of the 

coupling of these objects to other matter fields and hot plasmas is required in order to 

investigate how they affect the dynamics of phase transitions and how their own decay 

is affected by these couplings. It is clear though that they are of interest cosmologically. 

We are currently analyzing the consequences of oscillons if they were to be formed at the 

electroweak scale [IS]. 
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